Sound Activated Lights

This diy sound activated lights circuit turns a lamp ON for a short duration when the dog barks (or a relatively strong sound) giving an impression that the occupants have been alerted. The condenser microphone fitted in a place to monitor sound and generates AC signals, which pass through DC blocking capacitor C1 to the base of transistor BC549 (T1). Transistor T1 along with transistor T2 amplifies the sound signals and provides current pulses from the collector of T2. When sound is produced in front of the condenser mic, triac1 (BT136) fires, activates lights and the bulb (B1) glows for about two minutes.
 Assemble the sound activated lights circuit on a general purpose PCB (circuit board) and enclose in a plastic cabinet. Power to the sound activated switch circuit can be derived from a 12V, 500mA step-down transformer with rectifier and smoothing capacitor. Solder the triac ensuring sufficient spacing between the pins to avoid short circuit. Fix the unit in the dog’s cage or close to the sound monitoring spot, with the lamp inside or outside as desired. Connect the microphone to the sount activated lights circuit using a short length of shielded wire. Enclose the microphone in a tube to increase its sensitivity.

Caution. Since the sound activated lights uses 230V AC, many of its points are at AC mains voltage. It could give you lethal shock if you are not careful. So if you don’t know much about working with line voltages, do not attempt to construct this circuit. We will not be responsible for any kind of resulting loss or damage.

Ultra-Sensitive Solid State Clap Switch

Here is the circuit of a highly sensitive clap switch that can be operated from a distance of up to 10 metres from the microphone. Signals picked up by the microphone are amplified by transistors T1, T2, and T3. Diode D1 detects clap signals and the resulting positive voltage is applied to the base of transistor T4. The output from transistor T4 is further amplified by transistor T5, whose output is used to trigger a monostable multivibrator wired around the 555 timer (IC1). The output of IC1 is used as a clock for decade counter 4017 (IC2) that is wired as a divide-by-two counter.

Ultra-Sensitive Solid State Clap Switch

For each successive clap, transistor T6 conducts and cuts off alternately. As a result, for each clap signal, the lamp is either switched ‘on’ or ‘off’. Triac 8T44A (or ST044) can drive load of up to 4-amp rating. The 12V DC for operation of the circuit is directly derived from the mains using rectifier diode D2, current-limiting resistor R16, and 12V zener ZD1 shunted by filter capacitor C7.

Room Recorder

My wife was working on a doctoral dissertation and needed to do some field work involving personal interviews in various settings. What would be the best way, technically speaking, to record the interviews? To pass a tape recorder or microphone back and forth seemed too awkward and clipping wired microphones to interviewees didn’t make for a particularly informal atmosphere. Radio microphones seemed overly expensive, too. After some thought, I can up with the "Room Recorder", an add-on microphone preamplifier circuit for use with a tape recorder. While I don’t make any great claim to originality for the circuit, it has produced first class results over one year of interviews and might prove useful to anyone doing similar work.

Circuit diagram:
Room Recorder circuit schematic
Room Recorder Circuit Diagram

The preamplifier was plugged into a Sony Cassette-Corder (any similar device will work) by means of a long, screened microphone cable and placed in a central location in a room or on a bench. The circuit will pick up every whisper, so background noise should be considered when choosing a location. A 2-terminal electret microphone picks up the sound, which is then amplified by a TL071CN low-noise op amp. Note that the microphone’s negative terminal is connected to its case. Negative feedback is applied to the inverting input through a 10kO resistor. Increasing the value of this resistor will increase sensitivity, and vice versa. For ease of use and quietness of operation, the circuit is powered from a 9V battery. The power switch is mounted on the case. The circuit draws about 2mA and would therefore give about 10 days continuous service from a 9V alkaline battery.
Author: Thomas Scarborough - Copyright: Silicon Chip Electronics

Compressor For Electret Microphone

The ‘FM Remote Control Receiver’ (available on this website in Infra-red circuits section) has a connector where an analogue output is made available. To make a simple intercom or P.A. system the associated transmitter needs a microphone pre-amplifier that outputs a signal at the correct level. And that is exactly the function of this circuit. Actually, this design is adapted from a circuit published last year (‘AM Modulator for Intercom’). A few things have been changed so that it can work with the 5 V supply from the transmitter module. The OTA (IC1) used here is the single version (CA3080), which has slightly different characteristics from the dual CA3280.

Compressor For Electret Microphone

The quad opamp is the same rail-to-rail TS924IN, made by ST. The turnover frequency of the filter (3rd order 1 dB Chebyshev) has been increased slightly to improve the intelligibility of speech and is now about 5.5 kHz. The filter now amplifies the signal by a factor of 10. In practice it is possible that due to various tolerances and the fact that the opamp is not perfect, the filter characteristic shows some deviation from that required. In our prototype it was necessary to change R15 into 2k7 to straighten the response curve. The DC current variation at the output of the OTA and the resulting offset variation at the output of current/voltage converter IC2d is such that the gain of IC2d has to be substantially smaller than in the ‘old’ design.

Otherwise the output could easily rise to the supply voltage at low signal levels. The value of R6 has therefore been made smaller by a factor of 10. This has reduced the gain of the circuit by 20 dB, which is compensated for in the filter. The amplitude of the signal from IC2d is fed back as a control current to the OTA by peak rectifier D1/C3 and inverting amplifier IC2b. R7 limits the loading on IC2d. P1 can be used to adjust the amplifier between a fixed gain and maximum compression. Figure A shows clearly what effect the circuit has. 0 dBr corresponds to 100 mV. The maximum gain, with P1 set to maximum compression, is about 48 dB (250 Ω) for small signals.

Compressor For Electret MicrophoneThe minimum gain is about 20 dB (10 Ω). The OTA is then slightly overdriven and the distortion becomes several percent! With a fixed gain selected (P1 shorted) the gain is about 42 dB (125 ×). The middle curve was measured with P1 in its central position. The curve drawn for a fixed gain (the straight line) doesn’t finish at the edge of the graph because the end of the line corresponds to the maximum possible output level, which is 25 dBr (≈1.76 V or 5 / 2√2). Figure B shows the frequency response. The low turnover frequency is mainly determined by C8 (and to a lesser extent by C1) and is about 120 Hz.

The current consumption is about 7 mA When the circuit is battery powered we recommend the use of three AA cells, because the circuit still works perfectly at 4.5 V. If you want to use a higher supply voltage (maximum 12 V for the de TS924IN and 30 V for the CA3080, but you should also think of the voltage across the electret microphone!) you have to keep in mind that the maximum current through R9 (which is IABC) is only 2 mA. When we consider a maximum chosen current of 1 mA and the maximum output voltage of IC2b (half the supply voltage, which is 2.5 V), then the value of R9 should be (2.5 – 0.7) V / 1 mA = 1.8 kΩ. The value of 0.7 V corresponds to the potential between pin 5 and earth.

Compressor For Electret MicrophoneFor a larger safety margin R9 is calculated with the full supply voltage and a current of 2 mA: (5 – 0.7) V / 2 mA = 2k2 (rounded upwards). Of course the regulation will then be different (a little less gain). This circuit and the transmitter module can therefore be fed from the same 5 V supply. Because the transmitter requires a DC offset at its input, a resistor is connected to +5 V via a jumper, which biases the output to half the supply voltage. With the jumper open R17 functions as a load resistor when the output is not connected, because C9 still has to charge up even without a load. If you’re designing a PCB for this compressor then it makes sense to include the transmitter module as well. The current consumption then increases by about 10 mA.
Author: T. Giesberts - Copyright: Elektor Electronics